

MONORAIL SYSTEMS

RAILTECHNIEK VAN HERWIJNEN BV

Flowcoat

Bridge Crane

Track 2
Load Diagram 5
Practical Values 6
Monorail 7
Bends 8
Switches 10
Turntables 17
Switch Combinations 18
Loadbar 20
Brackets 21
Monorail Interrupter 25
Expansion Devices 27
End Caps And Stopper 28Electric Lift-Lower
Device 38
End Lift-Lower Device 42
Coupling Bridge Crane 44
Semi Automated Systems 45
Transfers 46
Bridge Cranes 48
Cable Guidance 49
Our Devisions 50

Type of
tracks
230.000
240.000
250.000
260.000

sizes $\mathrm{A} \times \mathrm{B} \times \mathrm{Cmm}$	weight kg / m	S cm^{2}	Ix cm^{4}	V_{1} cm	V cm	V cm^{3}	Z mm	r mm
$66 \times 62 \times 3$	4.98	6.38	36	3.60	3.00	10.0	20	4
$74 \times 74 \times 4$	7.67	9.84	72.5	4.01	3.40	18.0	22	4
$100 \times 80 \times 5$	11.55	14.80	186	5.39	4.61	34.5	26	6
$120 \times 110 \times 7$	26.78	20.89	501	5.6	6.4	78	28	9

Type of tracks
260.000

Type

The special cold rolled monorail tracks are available in 4 sizes, each is indicated by 6 figures:
230.000, 240.000, 250.000 and 260.000.

The standard lengths are 6 m . Intermediate lengths are also available. In a monorail project all tracks are cut to the exact dimensions.

Execution

The tracks can be supplied in three different finishes:

1. The track is painted and not drilled.

In this case the second series of 3 figures is indicated by: ...000...
2. The track is painted, drilled and tapped (at both sides) for a jointing bracket. In this case the second series of 3 figures is indicated by: ... 100... 3. The track is painted, drilled and tapped (at both sides) for a connecting piece. In this case the second series of 3 figures is indicated by: ...300...

Identification

Example of order

The tracks are indicated by a number of 9 figures.
The first series of 3 figures indicates the track type: 250... ...
The second series of 3 figures indicates the finishing:... 100 ...
The third series of 3 figures indicates the length: 300

Finish

In the standard execution the tracks are supplied with an orange premium finish coating RAL 9006. The tracks can be supplied in other colours.
By request the tracks can be supplied galvanized (hot dipped), metallized or with an epoxy coating.

In Addition

The tracks type 230.000 and 240.000 are also available sendzimir galvanized. In this case the second array of three numbers is indicated by: ...001... .

Static load Fs with deflection $f=1 / 400 \times$ Xs or $f=1 / 500 \times$ Xs and a max. deflection stress of $1000 \mathrm{~kg} / \mathrm{cm}^{2}$, taking into account the deflection due to the track's own weight.

Static
 Loading

In the table are some practical values of the maximum carrying capacity F in kg and for the equally divided load Q in kg / m as a function of the distance between brackets Xs in mm .
These values apply for monorail applications.

Distance between brackets = Xs	230.000		240.000		250.000	
500	F	Q	F	Q	F	Q
660	-	-	-	-	1800	1800
750	-	-	-	-	1400	1400
1000	-	-	-	-	1200	1200
1200	250	250	500	500	1000	1000
1500	210	220	420	440	850	900
2000	160	150	320	300	700	625
2500	100	75	200	150	500	340
3000	65	40	130	80	300	200
3500	40	20	90	40	200	110
4000	25	12	60	25	140	60
4500	15	7	40	15	100	40
	-	-	25	8	70	25

Remark

In general a monorail system is fixed with the brackets to a steelwork consisting of IPE-girders.
While calculating the steelwork, it is very important to respect an f max according to the application:
f max $<1 / 400$ for monorails in single straight tracks
f max $<1 / 500$ for monorails in the stock areas of the circuit

Please contact our engineering department for applications with heavy impact loads, or in the case of F or Q > $1000 \mathrm{~kg}(/ \mathrm{m})$.

The standard track bends in a monorail system are supplied with a radius from 310 mm up to 1200 mm .
On request the track bends can be manufactured with an other radius.
The standard track bends are provided at both ends with a straight piece of track in order to ensure a perfect joining to the following straight track. We have various vertical bends available in our program as well.

The track bends with a radius up to and including 600 mm are provided with a vertical and drilled suspension plate. The track curves with a radius larger than 600 mm are fastened with clamps and standard brackets to an l-girder of the support steelwork.

General

The suspension piece type A is welded to the support steelwork and is applicable for track curves with a radius up to and including 600 mm .

Suspension Piece Type A

Suspension
 Piece Type B

The suspension piece type B is clamped to support steelwork executed in IPE-girder 120 up to and including IPE 270 and is applicable for track curves with a radius up to and including 600 mm .

In Addition
The lengthened track curves 90° are fastened to an l-girder of the steelwork with 2 pairs of standard clamps.

All switches are fitted with movable, load bearing tongues.
The switch mechanism is mechanical and is operated by a chain. For the standard mechanism the pull chain is located at 500 mm from the monorail.
On request a lengthened mechanism can be supplied so that the pull chain is suspended further from the track.

Executions of the RAILTECHNIEK switches

The switches are schematically indicated in top view. For the standard execution of the 2 way switches the pull chain for the operation of the switch mechanism is suspended to sidewards the straight track. On request the pull chain can be suspended sidewards to the track curve.
Code: \qquad . 002
(except for Y -switches)

Remark

The track switches also can be fitted out with a pneumatic or electrical switching device for farther information please talk to our application engineering department

Schematic view

TOP VIEW

switch right

switch left

BOTTOM VIEW

switch right

switch left

right	left
230.511/xxx99	$230.521 / x x x 99$
$240.511 / x x x 99$	$240.521 / x x x 99$
$250.511 / x x x 99$	$250.521 / x x x 99$
$260.511 / x x x 99$	$260.521 / x x x 99$
$x x x=\alpha^{\circ}$	

2 Way
 \title{
2 Way

 Switches
}

 Switches
}

right	left
230.511	230.521
240.511	240.521
250.511	250.521
260.511	260.521

right	left
230.531	230.541
240.531	240.541
250.531	250.541
260.531	260.541

right	left
230.551	230.561
240.551	240.561
250.551	250.561
260.551	260.561

45° switch
60° switch
special switch with any curve angle

Track
 Switches

switch with

 lengthened curve| right | left |
| :---: | :---: |
| 230.571 | 230.581 |
| 240.571 | 240.581 |
| 250.571 | 250.581 |
| 260.571 | 260.581 |

Y-switch: $2 \times 45^{\circ}$
pull chain
right
230.621/002
240.621/002
250.621/002
260.621/002
pull chain left
230.621/001
240.621/001
250.621/001 260.621/001
pull chain left
230.611/001
240.611/002
250.611/002
260.611/002
pull chain right
230.611/002 240.611/001
250.611/001
260.611/001

lengthened Y-switch: $2 \times 90^{\circ}$

pull chain right
230.591/002
240.591/002
250.591/002
260.591/002

230.791
240.791
250.791
260.791
230.681
240.681
250.681
260.681
230.671
240.671
250.671
260.671

3 way switch
$2 \times 45^{\circ}$
lengthened 3 way switch $2 \times 90^{\circ}$

Composed T-Switches

Composed T-switches (standard execution)

Composed T-switches (shortened execution)
pull chain "Y" right 230.781/002 240.781/002 250.781/002 260.781/002
pull chain "Y" left
230.781/002 240.781/002 250.781/002 260.781/002

The pull mechanism of these 2 way switches is replaced by a specially adapted mechanism.
As the trolley itself operates the switch, this kind of switches does not need the operator intervention.

Is used when the load is always transfered in the direction of the indicated arrows (see figure) Codification ... 003
E.g. 250.520/003

The load carrying direction tongue of this two way switch is held in a predetermined position by a spring mechanism. The spring mechanism is easy to reverse which makes it possible to choose between the running a or b (see figure)
Code .../007 Ex. 250.520/007

Pneumatically Operated Switches (... .../009)

Special Switch Operations

Switch

Combinations

Turntable

The operation of a turntable can be either pneumatic or electric (Please contact our engineering department for the latter case).

The turntable can only be operated without a trolley in the turntable.

230.730
240.730
250.730

Switch/Turntable Combination

A turntable is commonly used in combination with switches.
In order to ease the mounting of these combinations, the use of the switches as follows on is strongly recommended, because of their specially adapted overall dimensions.

2*0.537 right
2*0.547 left
Description of the switches with standard overall dimensions code

- Y-switch - pull chain at the left/001
- Switch with pull chain sidewards to the track curve/002
- Y-switch with pull chain at the right/002
- Switch without operation/003
- Automatic switch for 2-wheeled trolley/004
- Switch with lengthened pull chain/005
- Y-switch with lengthened pull chain at the left
.../006
- Switch with lengthened pull chain sidewards to the track curve
.../006
- Y-switch with lengthened pull chain at the right
.../007
.../007
- Spring operated switch
- Spring operated switch
.../009
.../009
- Pneumatically operated switch
- Pneumatically operated switch
.../024
.../024
- Automatic switch for 4-wheeled trolley
- Automatic switch for 4-wheeled trolley/094
Description of the switches with adapted overall dimensions code

Description of the switches with adapted overall dimensions

- 2 way switch 45° right 2*0 733
- 2 way switch 45° left 2*0 734
- 3 way switch 2*0 738

0738

This 3 way switch is composed of a combination of switches with different functions. e.g. A 3 way switch may be composed of a switch without operation and of a second one spring operated.
As this 3 way switch is composed of two separate working switches the function is indicated with a identification number of 5 figures which follows the order number of the switch.
The first three figures of the codification refer to the mechanism of the right switch and the last two figures of the identification number refer to the mechanism of the left switch. The reference is for instance : 250.607/00307
This is a 3 way switch $2 \times 90^{\circ}$ of which the switch without operation is the right one and the

Track switch operating devices

3 Way Switch
With Special Switch Operating Device

Switches With
 Lengthened Pull
 Chain

[^0]The use of loadbars allows the transport of several products together. A loadbar consists of a flightbar with a buffer on both sides. The single or double trolleys are mounted on fixings that are welded on the crossbar at a distance equal to the parallel track width in the monorail circuit. These fixings ensure that pendant connections between the trolleys and the loadbar are kept constant, in order to avoid excessive wearing of the curves and the track switches.

Trolley

$$
\begin{array}{ll}
\text { Single } & \text { Double } \\
\text { Trolley } & \text { Trolley }
\end{array}
$$

(2)

Instructions for use

The brackets are subdivided in to standard and joining brackets.
A standard bracket is used as suspension point for the track.
A joining bracket is used as suspension point where two tracks are joined.

A monorail installation can be mounted directly to a ceiling (subject to the ceiling strong enough) or to a horizontal mounting face.
If switches are applied in an overhead runway a headroom of 60 mm should be provided.

standard bracket	jointing bracket	w	h	a_{1}	a_{2}	b	s	t	v	k	p	d
231.230	231.240	142	82	35	108	60	6	33	$\varnothing 13$	-	M 8	6
241.230	241.240	160	94	34	124	60	8	37	$\varnothing 14$	-	M 10	8
251.230	251.240	185	119	50	145	80	8	50	17	22	M 10	8

Finish: painted

2*1.340

standard bracket	jointing bracket	Ød	I	b	s	a_{1}	t	p
231.310	231.340	M 12	72	60	6	35	33	M 8
241.310	241.340	M 16	75	60	8	34	37	M 10
251.310	251.340	M 20	95	80	8	50	50	M 10

Finish: electro galvanized

$2^{* 1.230}$

Ceiling Mounted Bracket

Wall Fixing

 Bracket

2*1.130
Finishing: painted

* 251.130
** 251.140

Jointing

Piece

A jointing piece is used if there is no suspension point and if two track ends are to be linked.
The jointing piece should be placed as close as possible to a bracket.

standard execution	execution for switch	L	a_{1}	a_{2}	t	s	P
231.910	231.990	160	35	35	33	3	M 8
241.910	241.990	160	35	35	37	3	M 10
251.910	251.990	200	50	50	50	4	M 10

Finishing: electro galvanised

A monorail installation can be mounted directly to a ceiling (subject to the ceiling strong enough) or to a horizontal mounting face.
If switches are applied in an overhead runway a headroom of 60 mm should be provided.

standard bracket	jointing bracket	w	h	a_{1}	a_{2}	b	s	t	v	k	p
RT-36053	RT-36054	142	82	35	108	60	6	33	13	--	M 10
RT-32678	RT-32675	260	134	35	140	70	8	37	13	84	M 10
RT-36685	RT-36682	260	160	50	145	100	8	50	17	91	M 10

Finishing: painted

A monorail can be mounted under an l-girder in a longitudinal direction. On request heightened brackets can be supplied. In this case the measure " h " should be mentioned.

Universal Mounted Bracket

Bracket for parallel fixing

standard bracket	jointing bracket	w	h	m	v	f	t	s	a_{1}	a_{2}	b	p	h_{1}
231.750	231.760	150	126	4	120	134	33	4	35	84	65	M 8	24
241.750	241.760	160	134	4	120	134	37	4	34	84	75	M 10	24
251.750	251.760	180	160	5	140	185	50	5	50	124	100	M 10	26

Finishing: painted

Bracket for cross fixing

This bracket enables a mounting of the monorail under an I-girder in a diagonal direction. On request heightened brackets can be supplied. In this case the measure " h " should be mentioned.

standard bracket	jointing bracket	w	h	m	v	a_{1}	a_{2}	b	t	s	p	h_{1}
231.710	231.720	150	126	4	120	35	106	65	33	4	M 8	24
241.710	241.720	160	134	4	120	34	116	75	37	4	M 10	24
251.710	251.720	180	160	5	140	50	135	100	50	5	M 10	26

Finishing: painted

Clips for parallel or cross fixing are used to mount a monorail directly under an I-girder.
Two clips, fitted to the lowest width of the flange, have to be provided for each bracket.

Clip for IPE-girder			
IPE 100	$231.850 / 10$	$241.850 / 10$	$251.850 / 10$
120	$231.850 / 12$	$241.850 / 12$	$251.850 / 12$
140	$231.850 / 14$	$241.850 / 14$	$251.850 / 14$
160	$231.850 / 16$	$241.850 / 16$	$251.850 / 16$
180	$241.850 / 18$	$241.850 / 18$	$251.850 / 18$
200	$241.850 / 20$	$241.850 / 20$	$251.850 / 20$
220	$241.850 / 22$	$241.850 / 22$	$251.850 / 22$
240	$241.850 / 24$	$241.850 / 24$	$251.850 / 24$
270	$241.850 / 27$	$241.850 / 27$	$251.850 / 27$

Finishing: electro galvanised

The interruption of a monorail is often necessary in the case of fire proof doors, sliding doors for ovens, locking devices for unloading areas, roller shutters, guillotine doors, etc.
The built-in security guarantees that the monorail interrupter cannot open in the instance where a trolley is inside the unit.

Aleft or a right turning operation is available.

Execution

Mechanical or pneumatic operation is available.

Mechanical Operation

In case of mechanical operation the sliding door opens the interrupter.
The closing of the interrupter is by a spring mechanism.
The track length "L" is determined as a function of the door thickness "D"
A specific door thickness corresponds with a 4 digit code, which follows the order reference.

Door thickness	Code
0 to 50	0050
50 to 80	0080
80 to 125	0125
125 to170	0170
170 to 200	0200

Pneumatic Operation

In this case the interrupter is opened by a pneumatic cylinder.
The track length is standard executed with $L=550 \mathrm{~mm}$. In open position the free passage is 320 mm

Monorail interrupter			
Mechanical		Pneumatic	
rotation		rotation	
Right	Left	Right	Left
232.110 code	232.120 code	232.110 .009	232.120 .009
242.110 code	242.120 code	242.110 .009	242.120 .009
252.110 code	252.120 code	252.110 .009	252.120 .009

This device is used for applications where the track can expand e.g. safety tracks or ovens. The expansion device is composed of a special bracket with tracks finished at one side as indicated by the drawing.

According to the fastening possibilities the following options are available.

To calculate the number of expansion devices one should take into account that for each expansion device the maximum expansion is 20 mm . The expansion devices are mounted with the maximum opening so that the tracks can expand in case of temperature increase.

General

Expansion Bracket for I-Grider

Expansion
 Bracket on
 Threaded Rod

Expansion
 Ceiling Mounted Bracket

End Cap With Buffer

The end cap with buffer is used in combination with a trolley of a hoist or when the trolley should run to the end of the monorail. The rubber buffer can be adjusted according to the type of trolley running in the monorail.

Reference	a	b	p	H
239.690	35	15	M8	134
249.690	40	20	M10	154
259.690	55	20	M10	185

End Cap With Connecting Box

This end cap is provided with a connecting box for flat and flexible electric cables and with fixing holes for the fastening of a cable clamp.

Profiel nr	End cap
239.640	134
249.640	134
259.640	185

The rail stop is used to limit the runway in a monorail.
It is advisable to mount the stop before a bracket.

Reference	t	b	h	W
229.610	20	40	40	38
239.610	28	50	50	45
249.610	30	40	60	56
259.610	40	50	70	60

The end cap is used for any open end of a monorail track (for light use).

Railtechniek developed a complete range of standard wheelsets to which a specific item such as a bolt, a hook etc... fits according the application. All wheelsets are mounted on ball-bearings. The wheels are working independently and are mounted two by two (bogie arrangement). Depending on the application there is the choice between 2 -wheeled, 4 -wheeled or 8 -wheeled trolleys. All trolleys can rotate on their vertical axis (except series550). The trolleys are also provided with vertical guides in order to avoid the overturning and to assure a perfect guidance during the translation. The standard trolleys are fitted for temperatures of maximum $100^{\circ} \mathrm{C}$. In case of working conditions up to $150^{\circ} \mathrm{C}$ or up to $300^{\circ} \mathrm{C}$, the trolleys are mounted on special high temperature ball bearings.

The code of the trolleys changes according to the working conditions : e.g. :

$$
\text { Up to } 100^{\circ} \mathrm{C} \quad \text { Up to } 150^{\circ} \mathrm{C} \quad \text { Up to } 300^{\circ} \mathrm{C}
$$

Ref. 244010/1 243510/1 243010/1

Carrying capacity of the trolleys

In the tables the maximum carrying capacity ' F ' is indicated.
In order to calculate the carrying capacity F, the real net load has to be increased with the operating coefficient and the
temperature coefficient ' y '.
$\mathrm{F}=\mathrm{Fn} x \Psi \mathrm{x} y$

Remark:

The maximum admissible carrying capacity " F " of the trolleys is indicated in the tables with operating coefficient $\Psi=1$ and temperature coefficient $y=1$.

Note:

The maximum temperature for trolleys with nylon wheels is $80^{\circ} \mathrm{C}$.
Finishing: electro galvanized

General

OPERATING COEFFICIENT $\boldsymbol{\Psi}$

Kind of operating	Coefficient Ψ
I. Very moderate use, no shock or impact load (e.g. the daily transfer of a load along some meters)	1
II. Normal use, very light shock or impact load (e.g. automatic equal motion with a speed of max. $10 \mathrm{~m} / \mathrm{min}$., motion time of the trolleys up to 20% max.)	1.21
III. Frequent use, light shock or impact load (e.g. manual motion with unequal speed, motion time of the hangers 20 to 50%).	1.33
IV. Very frequent use, shock or impact load (e.g. continuous working automatic installations, motion time of the hangers 50 to 100%	2

TEMPERATURE COEFFICIENT y

Temperature	Temperature coefficient y
15 à $100^{\circ} \mathrm{C}$	$=1$
à $150^{\circ} \mathrm{C}$	$=1.05$
à $200^{\circ} \mathrm{C}$	$=1.15$
à $225^{\circ} \mathrm{C}$	$=1.25$
à $250^{\circ} \mathrm{C}$	$=1.35$
à $275^{\circ} \mathrm{C}$	$=1.50$
à $300^{\circ} \mathrm{C}$	$=1.70$

	$\mathrm{F}^{*}(\mathrm{~kg})$	a	b	c	$\varnothing \mathrm{d}$	e	f	$\varnothing \mathrm{g}$	w
Steel wheels	125	25	9.5	27.5	12.2	41	19	54.5	90
$234.010 / 1$	250	30	12	32	12.2	48	20.5	61.5	91.5
$244.010 / 1$	500	31	12	39	16.2	59	27.5	79.2	105
$254.010 / 1$									
Nylon wheels	125	24	10	27.5	12.2	41	18.5	54.6	90
$234.015 / 1$	200	30	12	32	12.2	49	19.5	63.5	91.5
$244.015 / 1$	300	31	12	39	16.2	56	31	72.5	105
$254.015 / 1$									

Wheelset $150^{\circ} \mathrm{C}$

These wheelsets are mounted on open ball bearings which are greased with special grease fitted for high temperature. Nothing but oil or grease specially adapted for high temperature, may be used for further lubricating.

	$F^{*}(\mathrm{~kg})$	a	b	c	$\varnothing \mathrm{d}$	e	f	$\varnothing \mathrm{g}$	w
$233.510 / 1$	125	25	9.5	27.5	12.2	41	19	54.5	90
$243.510 / 1$	250	30	12	32	12.2	48	20.5	61.5	91.5
$253.510 / 1$	500	31	12	39	16.2	59	27.5	79.2	105

Wheelset $300^{\circ} \mathrm{C}$

These wheelsets are mounted on open ball bearings which are greased with special grease fitted for high temperature. Further lubricating can be done manually or automatically. Nothing but oil or grease specially adapted for high temperature, may be used for
 further lubricating.

	$\mathrm{F}^{*}(\mathrm{~kg})$	a	b	c	$\varnothing \mathrm{d}$	e	f	$\varnothing \mathrm{g}$	w
$233.010 / 1$	125	24	10	27.5	12.2	42	18	56	90
$243.010 / 1$	250	30	12	32	12.2	47	19.5	62	91.5
$253.010 / 1$	500	30	12.5	39	16.2	59.5	27	80	105

2-Wheeled Trolley With Bolt

2*4.010

	$F^{*}(\mathrm{~kg})$	h	j	k	l	m	z	1	2	3
Steel wheels								Wheelset	Bolt DIN931	Starlock
234.010	125	94.5	78.5	97.5	36	M12	10	$234.010 / 1$	M12 $\times 140$	$\varnothing 10$
244.010	250	96	79	100	36	M12	10	$244.010 / 1$	M12 $\times 150$	$\varnothing 12$
254.010	500	133	110.5	138	44	M16	13	$254.010 / 1$	M16 $\times 200$	$\varnothing 16$
Nylon wheels										
234.015	125	94.5	78.5	97.5	36	M12	10	$234.015 / 1$	M12 $\times 140$	$\varnothing 10$
244.015	200	95	79	99	36	M12	10	$244.015 / 1$	M12 $\times 150$	$\varnothing 12$
254.015	300	136	110.5	141	44	M16	13	$254.015 / 1$	M12 $\times 200$	$\varnothing 16$

2-Wheeled Trolley
With Bolt With
Longer Nut And
Clamping Pin

2*4.010/001

	$F^{*}(\mathrm{~kg})$	h	j	k	l	m	z	1	2	3
Steel wheels								Wheelset	Bolt DIN931	Starlock
234.010/001	125	72	78.5	97.5	36	M 12	16	$234.010 / 1$	$\mathrm{M} 12 \times 140$	$\varnothing 10$
$244.010 / 001$	250	71.5	79	100	36	M 12	16	$244.010 / 1$	$\mathrm{M} 12 \times 150$	$\varnothing 12$
$254.010 / 001$	500	101	110.5	138	44	M 16	20	$254.010 / 1$	$\mathrm{M} 16 \times 200$	$\varnothing 16$

2-Wheeled Trolley With Eye Nut

2*4.010/003

	$\mathrm{F}^{*}(\mathrm{~kg})$	h	j	k	Ød	m	1	2	3	4
Steel wheels							Wheelset	Bolt DIN931	Eye nut	Starlock
234.010/003	125	71	55	85	30	11	234.010/1	M12 x 90	M12	Ø10
244.010/003	250	62	45.5	77	30	11	244.010/1	M12 $\times 90$	M12	$\varnothing 12$
254.010/003	500	92	69.5	111	35	14	254.010/1	M16 $\times 130$	M16	$\varnothing 16$
Nylon wheels										
234.015/003	125	71	55	85	30	11	234.015/1	M12 x 90	M12	$\varnothing 10$
244.015/003	200	61	45.5	76	30	11	244.015/1	M12 $\times 90$	M12	$\varnothing 12$
254.015/003	300	95	69.5	114	35	14	254.015/1	M12 $\times 130$	M16	$\varnothing 16$

4-Wheeled Trolley With Bolt

4-Wheeled Trolley With Bolt With Longer Nut And Clamping Pin

2*4.040/001

	$F^{*}(\mathrm{~kg})$	w	a	u	t	x	h	k	l	s	1	2	3
Steel wheels											Wheelset	Bolt DIN931	Bolt DIN931
234.040/001	250	220	120	58	37	26	171	209	44	33	$234.010 / 1$	M12 x 140	M16 x 150
244.040/001	500	220	120	58	37	27	176	210	44	33	$244.010 / 1$	M12 x 150	M16 x 150
$254.040 / 001$	1000	250	140	60	43	25	173	216	52	35	$254.010 / 1$	M16 x 170	M20 x 150

4-Wheeled Trolley With Axle For Hoist

2*4.050

	$F^{*}(\mathrm{~kg})$	w	a	h	k	u	s	t	$\varnothing \mathrm{d}$	1	2
Steel wheels										Wheelset	Bolt DIN931
234.050	250	245	150	66.5	29.5	46	66	22	20	$234.010 / 1$	M12 x 110
244.050	500	245	150	75	29.5	46	66	31.5	20	$244.010 / 1$	M12 x 130
254.050	1000	280	170	80	32	49	70	32	22	$254.010 / 1$	M16 x 150

4-Wheeled Trolley With Swivel Hook And Safety Latch

	$\mathrm{F}^{*}(\mathrm{~kg})$	h	r	x	1	2
Steel wheels					$2^{*} 4.050$	Swivel hook
234.050/006	250	191	14	23	Dimensions see 234.050	254.050.006.000
244.050/006	500	200	14	23	Dimensions see 244.050	254.050.006.000
254.050/006	1000	204	14	23	Dimensions see 254.050	254.050.006.000

4-Wheeled Trolley With Eye Nut

	$\mathrm{F}^{*}(\mathrm{~kg})$	w	a	u	t	s	h	$\varnothing \mathrm{d}$	m	1	2	3	4
Steel wheels										Wheelset	Bolt DIN931	Bolt DIN931	Eye nut
234.040/003	250	220	120	58	37	33	155	35	$\varnothing 14$	$234.010 / 1$	M12 $\times 140$	M16 $\times 70$	M12
$244.040 / 003$	500	220	120	58	37	33	155	35	$\varnothing 14$	$244.010 / 1$	$\mathrm{M} 12 \times 150$	M16 $\times 70$	M12
$254.040 / 003$	1000	250	140	60	43	35	174	40	$\varnothing 16$	$254.010 / 1$	M16 $\times 170$	M20 $\times 80$	M16

2*4.550

	$F^{*}(\mathrm{~kg})$	w	a	b	c	$\varnothing \mathrm{g}$	h	k	u	s	t	$\varnothing \mathrm{y}$
Steel wheels	250	194	96	9.5	44	54.5	67.5	32	44	70	18.5	22
244.550	200	194	96	12	53.5	61.5	63	32	44	70	14	20
254.550	1000	214	108	12	54.5	79.2	67	33.5	49	76	13.5	20

Standard execution $\left(100^{\circ} \mathrm{C}\right)$	Trolleys-high temperature		Description
	Execution $150^{\circ} \mathrm{C}$	Execution $300^{\circ} \mathrm{C}$	
234.010	233.510	233.010	2-wheeled trolley with bolt M12
234.010/001	233.510/001	233.010/001	2-wheeled trolley with bolt M12 + higher nut
234.040	233.540	233.040	4-wheeled trolley
234.040/001	233.540/001	233.040/001	4-wheeled trolley + higher nut
244.010	243.510	243.010	2-wheeled trolley with bolt M12
244.010/001	243.510/001	243.010/001	2-wheeled trolley with bolt M12 +higher nut
244.040	243.540	243.040	4-wheeled trolley
244.040/001	243.540/001	243.040/001	4-wheeled trolley +higher nut
254.010	253.510	253.010	2-wheeled trolley with bolt M16
254.010/001	253.510/001	253.010/001	2-wheeled trolley with bolt M16 + higher nut
254.040	253.540	253.040	4-wheeled trolley
254.040/001	253.540/001	253.040/001	4-wheeled trolley + higher nut

8-Wheeled Trolley

With Bolt

8-Wheeled Trolley

 For Hoist
N.B.: id. for

8-wheeled trolley with higher nut

	$F^{*}(\mathrm{~kg})$	w	a	z	u	h	l	s	t	1	2	3
$\frac{\text { Steel wheels }}{254.070}$	1800	250	140	530	80	530	56	45	100	$254.010 / 1$	M20 x 120	M22 x 150

	$F^{*}(\mathrm{~kg})$	w	a	z	u	s	t	$\varnothing \mathrm{y}$	1	2
Steel wheels 254.070	1800	250	140	530	63	60	100	25	$254.010 / 1$	M20 x 120

N.B.: id. for

8-wheeled trolley
with higher nut

	$F^{*}(\mathrm{~kg})$	w	a	z	u	h	r	s	t	x	1	2	3
Steel wheels	1800	250	140	530	63	277	17	60	100	30	$254.010 / 1$	M20 x 120	254.090.006.000

With a lift-lower device often called a dropsection, goods can be lifted or lowered to a man's working height; this allows the track to be installed at a higher level. In the loading and unloading area goods can be easily handled.
Alift-lower device can be incorporated in either new or existing installations. Lift-iower devices are also used to immerse loads.

The problem of different levels in a circuit can be solved: for special applications lift-lower devices with a vertical guide system can be installed.
The lift-lower devices are standardized for lifting capacities of 250 kg and 500 kg . On request options for 1000 kg are available.

Alift-lower device is manufactured such that the lifting device is mounted on to the supporting structure. This supporting structure is integrated in the steelwork of the monorail circuit. Installation is by bolted flange plates directly to the support structure.

Lift-Lower Devices

Load	Series	OVERALL DIMENSIONS		
		A	B	C
250 kg	230.000	$1000-1500-2000-\ldots$ per 500 mm	$\mathrm{~A}+165$	$\mathrm{~A}+500$
	240.000	$1000-1500-2000-\ldots$ per 500 mm	$\mathrm{~A}+172$	$\mathrm{~A}+500$
	250.000	$1000-1500-2000-\ldots$ per 500 mm	$\mathrm{~A}+192$	$\mathrm{~A}+500$
	$2^{*} 0.000$	750	942	1500
500 kg	240.000	$1000-1500-2000-2500-\ldots$ per 500 mm	$\mathrm{~A}+194$	$\mathrm{~A}+500$
	250.000	$1000-1500-2000-2500-\ldots$ per 500 mm	A+194	A+500

Options:

- Pneumatic locking devices with control switch (pneumatic locking devices are necessary when several trolleys are positioned at the same time in the lift-lower device track)
- Connecting voltage: 400VAC $3 p+N+P E, 0.75 \mathrm{~kW}$
- Spring-controlled positioning switch
- Alternative lifting speed (up to $10 \mathrm{~m} / \mathrm{min}$)
- Lifting height $>3,5 \mathrm{~m}$
- Adjustable speed
- Detection of the trolley or the crossbeam in the lift-lower track; in this case the trolley or crossbeam is provided with a detection plate.
- EX- execution: Exd. engine, explosion-proof control device, electric box with intrinsically safe electrics (In this case the electric box should be placed outside the Exzone).
- Positioning device to stop the trolley in the center of the lift-lower device track.

Lift-lower devices of 1000 kg are only manufactured on request according to the specific demands of the customer.

Coupled

 Lift-Lower DevicesTwo lift-lower devices can be coupled electrically so that both devices are controlled from one single control box and operated with one single manual pendant control.

Sideways Lift-Lower Devices

2 Lift-Lower Devices In Sequence

A cross lift-lower device is composed of two standard lift-lower device mounted in parallel

These extended lift-lower devices are used in a circuit where a long flightbar is used. In this case the flightbars are provided with a detection piate so that the liftlower device only can be operated if the flightbar is correctly positioned in the track of the lift-lower device.

Zone detection on both sides of the lift-lower device also can be provided, in order to avoid collision of the flightbars while operating the lift-lower device.

Please contact our engineering department.

$A=$ length of lift-lower device track
$B=$ overall dimension of monorail track
$C=$ overall dimension of supporting structure

Extended Lift-Lower Devices

An end lift-lower device consists of a track of 1 meter and a hinged track of length "L" = (see table).
With a hoist or a compressed air cylinder the hinged track can be lifted. A safety device automatically locks the track.
The length "L" has to be communicated when ordering.

COUPLING BRIDGE CRANE

In a monorail circuit a bridge crane can be mounted in order to allow the trolleys to run in parallel mounted tracks: e.g. in baking ovens or sorting areas. The bridge crane can be coupled mechanically or pneumatically.

Railtechniek have developed several systems which can be applied according to the specific need like a simple powered conveying chain or a walking beam to provide automatic feed or automatic buffering.
Our sales department can inform you about the many different standard solutions developed by Railtechniek for numerous applications.

For automatization of manual monorail systems there are various options available.
Transportation is done by use of a transfer, a chain with pusherdog running next to the monorail and pushing a loadbar.
This is a cost efficient way for transportation through a spraybouth for example or the return line of empty carriers while keeping the rest of the system manual and not lose flexibility.
Railtechniek standard Teleflex D8 transfers which can be used in near endless situations applies due to its modular components.

Basic transfer example:

Remark concerning the chain: pitch $=203.2 \mathrm{~mm}$
Pusherdog can be mounted every 406.4 mm

Railtechniek manufactures a large range of bridge cranes.
Please ask for the separate catalogue.

Railtechniek manufacturers a large range of tracks with adaptor brackets and clamps for cable guidance.
Cable guidance applies for flat as well as for tubular flexible cable. Compressed air lines are hung on specially adapted trolleys.

Please ask for the separate catalogue.

Cable Guidance Trolleys

Electric cable

- Cable guidance trolley no 235.245 for track no 230.000
- The cable guidance trolley no 245.245 can be used in tracks no 240.000 as well as in tracks no 250.000

Track	Trolley No	L
230.000	235.245	52
230.000	235.245	52
230.000	235.245	52

Cable Clamps

Electric flat cable: clamp no 417.220
max. cable width 40 mm

Compressed air line

- Hose diameter minimum 10 mm maximum 18 mm
- Hose diameter minimum 20 mm maximum 25 mm

Clamp no. 417.110
Clamp no. 417.120

The following table helps to determine the number of the cable guidance trolleys (n) and the length of the feed cable or the com-pressed air hose (LK)

- For an effective runway of a trolley $(\mathrm{Ln})<30 \mathrm{~m}$, the values of n and LK are detailed.

Track length						
Ln	Cable length	Number of cable guidance trolley (n) for a loop height A (m)				
5	LK	0.5	0.63	0.8		

-For an effective runway of the trolley (Ln)? 30 m the values of n and LK are calculated as follows:
$-n=\frac{\operatorname{Ln} \times C}{2 \times A}-1 n=$ number of cable guidance trolleys A : Loop height C : Coefficient

Height of the loop (m): A	0.5	0.63	0.8	1.0
Coefficient C	1.1	1.08	1.065	1.05

LK $=\mathrm{LT} \times 1.1+2 \mathrm{~m}$
$\mathrm{LT}=\mathrm{L} w+\mathrm{Lv}$
$L w=L n+B$
$\mathrm{Lv}=\mathrm{n} \times \mathrm{w}$

LK : Cable length
LT : Total length of the track
Lw : Length of the runway
B : Width of the trolley
Lv : Required space for the cable guidance trolleys
w: Width of the cable guidance trolley

Calculation

RAILTECHNIEK VAN HERWIJNEN B.V.

THE NETHERLANDS

RAILTECHNIQUE FRANCE SARL

FRANCE

STEWART GILL CONVEYORS LTD.

ENGLAND

TELEFLEX B.V.

THE NETHERLANDS

TFX-RAILTECHNIK GmbH

GERMANY

RAILTECHNIQUE SRL MOLDOVA

MOLDOVA

Fabrication

Assembling
...

- - \bullet

RALLTECHNIEK VAN HERWIJNEN B.V.

Koelenhofstraat 13
4004-JR TIEL - THE NETHERLANDS PO Box 6223
4000 HE TIEL - THE NETHERLANDS
Telephone: +31 (0) 344-61 6363
Facsimilie: +31 (0) 344-61 1072
E-mail: info@raitechniek.nl
Internet: www.railtechniek.nl

Electrical steering department

Service

Who is RAILTECHNIEK?

Railtechniek van Herwijnen $B V$ is an independent global company, specializing since their foundation in 1983 in the production and installation of Overhead Conveyors components and systems. The company designs, manufactures and installs only under international approved standards.

For ancillary equipment such as electric switches, pneumatic, PLC's, bearings etc. we only use international suppliers who can meet with our standards. After the completion and sign off of the system by the customer a fully detailed manual inclusive of maintenance and operation instructions is supplied. After sales service \& maintenance contracts are offered (subject to a separate contract). All PLC control systems use a modem connection with our 24 -hour helpdesk. This is included as standard.

Our European subsidiaries:
RAILTECHNIEK VAN HERWIJNEN B.V. RAILTECHNIQUE FRANCE S.A.R.L
TFX-RAILTECHNIK GmbH
RAILTECHNIQUE S.R.L MOLDOVA
STEWART GILL CONVEYORS LTD. TELEFLEX B.V.

TELEFLEX
 ○ V®R凡EAロ

D 8

T 1
T 4
T5

RAILTECHNIEK VAN HERWIJNEN BV

STRAIGHT TRACK 2
BENDS 3
Horizontal 3
Vertical 4
180° Vertical 5
SWITCHES 6
TENSION SECTION 8
EXPANSION SECTION 9
STOP STATION 10
TURN WHEEL 11
DRIVE UNIT 12
Helicoidal 12
Caterpillar drive 13
TROLLEYS 14
CHAIN 17
PUSH DOG 18

500

D8

- TFX 803.00
- 11 Kg/m

T1

- TFX 813.000 P\&F
- TFX 813.100 F
- $24,5 \mathrm{Kg} / \mathrm{m}$

T4

- TFX 813.301 P\&F
- 42 Kg/m
- TFX 813.302 F

T5

- RT-24546 P\&F
- $51 \mathrm{Kg} / \mathrm{m}$
-RT-27285 F

	Radius	Type	30°	45°	90°
D8	$\mathrm{R}=750$		803.014	803.013	803.011
	$\mathrm{R}=1118$		803.024	803.023	803.021
T1	$\mathrm{R}=750$	P\&F	803.014	803.013	803.011
	$\mathrm{R}=1118$	P\&F	803.024	803.023	803.021
	$\mathrm{R}=750$	F	813.454	813.453	813.451
	$\mathrm{R}=1118$	F	813.464	813.463	813.461
T4	$\mathrm{R}=750$	P\&F	813.344	813.343	813.341
	$\mathrm{R}=1118$	P\&F	813.334	813.333	813.331
	$\mathrm{R}=1118$	F	813.464	813.263	813.261
T5	$\mathrm{R}=900$	P\&F	RT-27165-30	RT-27165-45	RT-27165-90
	$\mathrm{R}=900$	F	RT-27272-30	RT-27272-45	RT-27272-90

Non standard bends on request

Radius	Type	15°	30°	$\mathbf{4 5}^{\circ}$
$\mathrm{R}=750$	IN	803.060	803.064	803.063
$\mathrm{R}=750$	OUT	803.065	803.069	803.068
$\mathrm{R}=1118$	IN	803.070	803.074	803.073
$\mathrm{R}=1118$	P\&F IN	813.072	813.074	813.073
$\mathrm{R}=1118$	P\&F OUT	813.077	813.079	813.078
$\mathrm{R}=1118$	P\&F IN	813.430	813.431	
$\mathrm{R}=1118$	P\&F OUT	813.425	813.436	

D8

Non standard bends on request

$\mathrm{R}=305 \mathrm{~mm}$

$\mathrm{m}=32 \mathrm{Kg}$
TFX 803-330
with tension section
TFX 803-331
without tension section

SWITCHES

Take over section

Type

R2

R3

R4

L4

T1
$-\mathrm{m}=47 \mathrm{Kg}$
$-\mathrm{h}=355 \mathrm{~mm}$

T4

$$
\begin{aligned}
& -\mathrm{m}=53 \mathrm{Kg} \\
& -\mathrm{h}=350 \mathrm{~mm}
\end{aligned}
$$

T5

$-\mathrm{m}=102 \mathrm{Kg}$

- $\mathrm{h}=450 \mathrm{~mm}$

Type	R/L	Unattended	Pneumatic
T1 45°	R1	815.042	815.040
T1 45°	L1	815.043	815.041
T1 45°	R2	815.006	815.004
T1 45°	L2	815.007	815.005
T1 45°	R3	815.010	815.008
T1 45°	L3	815.011	815.009
T1 45°	R4	815.044	
T1 45°	L4	815.045	
T4 45°	R1	815.382	815.380
T4 45°	L1	815.383	815.381
T4 45°	R2	815.346	815.344
T4 45°	L2	815.347	815.345
T4 45°	R3	815.350	815.348
T4 45°	L3	815.351	815.349
T4 45°	R4	815.348	
T4 45°	L4	815.358	
T5 45 ${ }^{\circ}$	R1		RT-25206-R
T5 45°	L1		RT-25206-R
T5 45°	R2		
T5 45	L2		
T5 45°	R3		RT-25206-R
T5 45°	L3		RT-25275-L

D8
TFX 803.205
L=600 + max. 230 mm

T1

TFX 813.200
$\mathrm{L}=600+$ max. 230 mm

T5

RT-24736
L=600 + max. 230 mm

D8

TFX 803.210
L=350 - max. 50 mm

T1

TFX 813.210
L=350 - max. 50 mm

T4

TFX 813.215
L=600 - max. 230 mm

T5

RT-24736
L=600 - max. 230 mm

Ketting trolley

Right side: TFX 816-056
Left side:
TFX 816-062
Weight:

$$
\mathrm{m}=15 \mathrm{~kg}
$$

T4

Right side: RT-18606
Left side:
RT-18950

T5

Right side: RT-25446
Left side:
RT-24597

Working principe T1/T4

HELICOIDAL

DRIVE
D8
TFX 802-035
L=1000mm
$\mathrm{H}=294 \mathrm{~mm}+350$ for cover
$\mathrm{F}=4000 \mathrm{~N}$
Weight: $m=113 \mathrm{~kg}$

T1
TFX 812-035
L= $=1000 \mathrm{~mm}$
$\mathrm{H}=550 \mathrm{~mm}+500$ for cover
$\mathrm{F}=4000 \mathrm{~N}$

T4

TFX 812-045
L=1000mm
$\mathrm{H}=550 \mathrm{~mm}+500$ for cover
$\mathrm{F}=4000 \mathrm{~N}$

T5

RT-26886
$\mathrm{L}=1000 \mathrm{~mm}$
$\mathrm{H}=550 \mathrm{~mm}+500$ for cover
$\mathrm{F}=4000 \mathrm{~N}$

CATERPILLAR

 DRIVEDimensions:
L=2300mm
$\mathrm{H}=750$ incl. cover
$W=500 \mathrm{~mm}$

Pulling force:
$\mathrm{F}=9000 \mathrm{~N}$

Weight:
$m=400 \mathrm{Kg}$

D8
TFX 802-000
53.

T1
TFX 812-000

T4
TFX 812.050

T5
RT-25510

$$
\mathbb{E}
$$

transport direction

type 1

type 2
type 3

$F=10000 N \quad F=10000 N$

$F=10000 \mathrm{~N}$
(o)

T5

Type 1
RT-25311

Type 2
RT-25367
Type 3
RT-25363

Max. load is including weight of loadbar

type 3

$\mathrm{F}=15000 \mathrm{~N}$

CHAIN TYPE

Code

TFX 800-101 6204
TFX 800-102 6204-2Z
TFX 800-103 6204-2RS
$\mathrm{m}=7 \mathrm{Kg} / \mathrm{mtr}$
Bearing type

$F=3000 \mathrm{~N}$

T1/T4

TFX 810-020

T5
RT-25401

Head office

Engineering

Fabrication

Electrical control department

Assembling

Service

RAILTECHNIEK VAN HERWIJNEN BV Koelenhofstraat 13
4004 JR TIEL -THE NETHERLANDS PO Box 6223

4000 HE TIEL -THE NETHERLANDS
Telephone : +31 (0) 344-616363
Fax : +31 (0) $344-611072$
E-mail : info@railtechniek.nl
Internet : www.railtechniek.nl

Our European subsidiaries:

RAILTECHNIEK VAN HERWIJNEN BV RAILTECHNIQUE FRANCE SARL

TFX-RAILTECHNIK GmbH
RAILTECHNIQUE SRL MOLDOVA
STEWART GILL CONVEYORS LTD
TELEFLEX BV
DUNNEWOLT BV

[^0]: The switches are fitted out with a lengthened pull chain in case of transport of large loads. In this execution the pull chain is suspended at 1 m from the monorail. Identification number:
 $\begin{array}{lll}\text { e.g.: } & \text { - Standard switch - with lengthened pull chain: } & 240.510 .005 \\ & \text { - Y-switch - with lengthened pull chain left: } & 240.620 .005 \\ & \text { - Y-switch - with lengthened pull chain right: } & 240.620 .006\end{array}$

